
A Mathematical Background for Dual-Path Diffusion

A.1 Forward Diffusion Process

In dual-path diffusion (DPD), we consider a Gaussian diffusion process [16] that continuously diffuses
our generation target z into increasingly noisy versions of z, denoted as zt with t 2 [0, 1] running
from t = 0 (least noisy) to t = 1 (most noisy). This forward diffusion process is formally defined as

q(zt|z) = N (zt;↵tz,�
2
t I), (14)

where two strictly positive scalar-valued, continuously differentiable functions ↵t,�t define the
noise schedule [1] of this forward diffusion process. Building upon the nice properties of Gaussian
distributions, we can express q(zt|zs), for any 0  s < t  1, as another Gaussian distribution:
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Regarding the choice of noise scheduling functions, we consider the typical setting used in [1, 15]:
↵t =

p
1� �2

t , which gives rise to a variance-preserving diffusion process [16]. Specifically, we
employ the trigonometric functions in [48], defined as follows:

↵t := cos(⇡t/2) �t := sin(⇡t/2) 8t 2 [0, 1] (16)
, ↵� := cos(�) �� := sin(�) 8� 2 [0,⇡/2]. (17)

With this re-parameterization, the diffusion process can now be defined in terms of angle � 2 [0,⇡/2]:

z� = cos(�)z+ sin(�)✏, ✏ ⇠ N (0, I), (18)

where z� gets noisier as � increases from 0 to ⇡/2.

A.2 Prediction of Diffusion Velocity

The diffusion velocity of z� at � [48] is defined as:

v� :=
dz�
d�

=
d cos(�)

d�
z+

d sin(�)

d�
✏ = cos(�)✏� sin(�)z. (19)

Based on v� , we can compute z and ✏ from a noisy latent z�:

z = cos (�)z� � sin(�)v� = ↵�z� � ��v�; (20)
✏ = sin (�)z� + cos(�)v� = ��z� + ↵�v�, (21)

which suggests v� a feasible target for network prediction v̂✓(z�; c) given a collection of conditions
c, as an alternative to the z prediction (ẑ✓(z�; c)), e.g., in [16], and the ✏ prediction (✏̂✓(z�; c)), e.g.,
in [1, 50, 74]. As reported by Salimans and Ho [48] and Schneider et al. [23], training the neural
network ✓ with a mean squared error (MSE) loss as in the pioneering work [1] remains effective:

L := Ez⇠pdata(z),✏⇠N (0,I),�⇠Uniform[0,1]

h
kcos(�)✏� sin(�)z� v̂✓(cos(�)z+ sin(�)✏; c)k22

i
, (22)

which forms the basis of DPD’s training loss, i.e., the simplest case of considering only a single
chunk per input (M = 1) in Eq. (7). We can easily extend this to a multi-chunk version by sampling
M different angles �1, . . . , �M ⇠ Uniform[0, 1], where the m-th sampled angle is applied to the
corresponding chunk of the latent, i.e., z[(m� 1)L/M : mL/M ].

A.3 Generative Diffusion Process

Generation is done by inverting the forward process from a noise vector randomly drawn from
N (0, I). One efficient way to accomplish this is to take advantage of DDIM [26], which enables
running backward from angle � to angle � � !, for any step size 0 < ! < �:

p✓(z��!|z�) := q
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where ✏ ⇠ N (0, I). Song et al. [26] considered ✏ ⌘ ✏̂✓(z�; c), leading to a deterministic update rule:
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↵�
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✓
���! �

↵��!��

↵�

◆
✏̂✓(z�; c). (24)

Building upon the diffusion velocity, Salimans and Ho [48] re-parameterized DDIM as

p✓(z��!|z�) :=q (z��! |z = ↵�z� � ��v̂✓(z�; c) ) (25)
=↵��! (↵�z� � ��v̂✓(z�; c)) + ���!✏, (26)

where ✏ ⇠ N (0, I). Here, we can similarly consider a parameterized noise vector ✏ ⌘ ��z� +
↵�v̂✓(z�; c) based on Eq. (21), yielding a simplified deterministic update rule:

z��! =↵��! (↵�z� � ��v̂✓(z�; c)) + ���! (��z� + ↵�v̂✓(z�; c)) (27)
=(↵��!↵� � ���!��) z� + (���!↵� � ↵��!��) v̂✓(z�; c) (28)
=cos(!)z� � sin(!)v̂✓(z�; c) (29)

where the last equation is obtained by applying the trigonometric identities:

↵��!↵� � ���!�� = cos(� � !) cos(�)� sin(� � !) sin(�) = cos(!); (30)
���!↵� � ↵��!�� = sin(� � !) cos(�)� cos(� � !) sin(�) = sin(!). (31)

Building upon this angular update rule and having specified the angle step sizes !1, . . . ,!T withPT
t=1 !t = ⇡/2, we can generate samples from z⇡/2 ⇠ N (0, I) after T steps of sampling:

z�t�!t = cos(!t)z�t � sin(!t)v̂✓(z�t ; c), �t =

(
⇡
2 �

PT
i=t+1 !i, 1  t < T ;

⇡
2 , t = T,

(32)

running from t = T to t = 1.

B Training and Implementation Details

B.1 Audio VAE-GAN

VAE-GAN
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Figure 4: The audio VAE-GAN trained for dual-path diffusion models

As shown in Figure 4, we train a VAE-GAN to extract 250Hz 16-dimensional latent z 2 R
L⇥16

from a 24kHz audio x 2 R
Twav with L = dTwav/96e. The audio VAE-GAN mainly comprises three

trainable modules: (i) a variational Gaussian encoder E�(x) ⌘ N (µ�(x),��(x)I), (ii) a decoder
D�(z), and (iii) a set of n discriminators {D(i)

}
n
i=1.

Regarding network architecture, we use the ResNet-style convolutional neural networks (CNNs) in
HiFi-GAN [66] as the backbone.6 For the encoder, we replace the up-sampling blocks in HiFi-GAN
with convolution-based down-sampling blocks, with down-sampling rates of [2, 3, 4, 4], output dimen-
sions of [32, 64, 128, 256] and kernel sizes of [5, 7, 9, 9] in four down-sampling blocks, giving 40M

6Our implementation is similar to that in https://github.com/jik876/hifi-gan.
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parameters. The final layer of the encoder maps the 256-dimensional output to two 16-dimensional
latent sequences, respectively for the mean and variance of diagonal Gaussian sampling.7 As shown
in Figure 4, to match the normal range of targets for diffusion models [1, 2], we map the sampled
outputs to [�1, 1] by z(i,j) := min

�
max

�
z̄(i,j)/3,�1

 
, 1
 
8i, j, where the subscript (i, j) denotes

the value on the i-th row and j-th column, and the choice of 3 in practice would sieve extreme values
occupying < 0.1%. For the architecture setting of the decoder, it inherits the same architecture of
HiFi-GAN, and uses up-sampling rates of [4, 4, 3, 2], kernel sizes of [9, 9, 5, 7] and larger number of
output channels ([768, 384, 192, 96]) for four up-sampling blocks, taking 60.1M parameters.

For adversarial training, we use the multi-period discriminators in [66] and the multi-resolution
spectrogram discriminators in [67]. The training scheme is similar to that in [66]. The training loss
for the encoder and the decoder comprises four components:

Lvae-gan(�) :=Ex⇠pdata(x)
⇥
Ez⇠E�(x) [�mr-stftLmr-stft + �fmLfm + �ganLgan + �klLkl]

⇤
(33)
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Lkl :=KL (E�(x)||N (0, I)) , (37)

where STFTr computes the magnitudes after the r-th short-time Fourier transform (STFT) out of
R = 7 STFTs (the number of FFTs = [8192, 4096, 2048, 512, 128, 64, 32]; the window sizes =
[4096, 2048, 1024, 256, 64, 32, 16]; the hop sizes = [2048, 1024, 512, 128, 32, 16, 8]), |D(i)

| denotes
the number of hidden layers used for feature matching in discriminator D(i), D(i)

l denotes the outputs
of the l-th hidden layers in discriminator D(i), and �mr-stft, �fm, �gan, �kl are the weights, respectively,
for the multi-resolution STFT loss Lmr-stft, the feature matching loss Lfm, the GAN’s generator loss
Lgan, and the Kullback–Leibler divergence based regularization loss Lkl. To balance the scale of
different losses, we set �mr-stft = 50, �fm = 20, Lgan = 1, and �kl = 5 ⇥ 10�3 in our training. In
practice, we find it critical to lower the scale of the KL loss for a better reconstruction, though the
distribution of the latents can still be close to zero mean and unit variance.

B.2 Wav2Vec2-Conformer

Our implementation of Wav2Vec2-Conformer was based on an open-source library.8 In particular,
Wav2Vec2-Conformer follows the same architecture as Wav2Vec2 [44], but replaces the Transformer
structure with the Conformer [45]. This model with 199.5M parameters was trained in self-supervised
learning (SSL) manner similar to [44] using our prepared 257k hours of music data.

B.3 MuLan

Our reproduced MuLan [43] is composed of a music encoder and a text encoder. For music encoding,
we rely on a publicly accessible Audio Spectrogram Transformer (AST) model pre-trained on
AudioSet,9 which gives promising results on various audio classification benchmarks. For text
encoding, we employ the BERT [8] base model pre-trained on a large corpus of English data using
a masked language modeling (MLM) objective.10 These two pre-trained encoders, together having
195.3M parameters, were subsequently fine-tuned on the 257k hours of music data with a text
augmentation technique similar to [6]. In particular, we enriched the tag-based texts to generate
music captions by asking ChatGPT [68]. At training time, we randomly paired each audio with either

7The Gaussian sampling is referred to LDMs’ implementation at https://github.com/CompVis/latent-
diffusion/blob/main/ldm/modules/distributions/distributions.py

8https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer
9https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593

10https://huggingface.co/bert-base-uncased
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Algorithm 1 Music Generation
1: given D�, v̂✓ , T , !1, . . . ,!T

2: input Music/text prompt P
3:
4: Initialize �T = ⇡/2
5: Compute the MuLan tokens for P: c1:Tcnd
6: Generate u1:TST from c1:Tcnd with LM . (1)
7: Sample z�T ⇠ N (0, I)
8: for t = T to 1 do
9: Prepare condition: c = {u1:TST , [�t]

L
r=1} . (8)

10: Update angle: �t�1 = �t � !t . (3)
11: z�t�1 = cos(!t)z�t � sin(!t)v̂✓(z�t ; c) . (9)
12: end for
13: repeat
14: pass c1:Tcnd , u1:TST and z0 to Algorithm 2
15: until z0 reaches the desired length
16: return D�(z0)

Algorithm 2 Music Continuation
1: given D�, v̂✓ , T , M , !1, . . . ,!T

2: input Music z0 and c1:Tcnd , u1:TST (if provided)
3:
4: Denote MST = dTST/Me, LM = dL/Me
5: Initialize �T = ⇡/2
6: Generate uTST:TST+MST from c1:Tcnd � uMST:TST

7: Sample znew ⇠ N (0, I) 2 R
LM

8: Save first chunk: zsave = z0[: LM ]
9: z�T = z0[LM :]� znew

10: for t = T to 1 do
11: Update �new = [0]L�LM

r=1 � [�t]
LM
r=1

12: Prepare condition: c = {uMST:TST+MST , �new}
13: Update angle: �t�1 = �t � !t

14: z�t�1 = cos(!t)z�t � sin(!t)v̂✓(z�t ; c)
15: end for
16: return zsave � z0

the generated caption or its respective tags. In practice, this could robustly improve the model’s
capability of handling free-form text.

C Algorithms for MeLoDy

MeLoDy supports music or text prompting for music generation, as illustrated in Figure 1. We
concretely detail the sampling procedures in Algorithm 1, where the algorithm starts by generating
the latent sequence of length L and then recursively prolongs the latent sequence using Algorithm 2
until it reaches the desired length.

We further explain how music continuation can be effectively done in DPD. Recall that the inputs for
training DPD are the concatenated chunks of noisy latents in different noise scales. To continue a
given music audio, we can add a new chunk composed of random noises and drop the first chunk.
This is feasible since the conditions (i.e., the semantic tokens and the angles) defined for DPD have
an autoregressive nature. Based on the semantic LM, we can continue the generation of dTST/Me

semantic tokens for the new chunk. Besides, it is sensible to keep the chunks other than the new
chunk to have zero angles: �new := [0]L�dL/Me

r=1 � [�t]
dL/Me
r=1 , as shown in Algorithm 2.

In addition, music inpainting can be done in a similar way. We replace the inpainting partition of the
input audio with random noise and partially set the angle vector to zeros to mark the positions where
the denoising operations are not needed. Yet, in this case, the semantic tokens can only be roughly
estimated using the remaining part of the music audio.

Table 4: The objective measures for the ablation study on angle schedules.
Angle schedule (!t) Steps (T ) FAD (#) MCC (")

Uniform [23]: !t =
⇡
2T

10 8.52 0.45
20 6.31 0.49

Ours proposed in Eq. (4): !t =
⇡
6T + 2⇡t

3T (T+1)
10 5.93 0.52
20 5.41 0.53

D Ablation Study on Angle Schedules

We conduct an ablation study on angle schedules to validate the effectiveness of our proposed angle
schedule !1, . . . ,!T in Eq. (4) in comparison to the previous uniform angle schedule [23] also used
for angle-parameterized continuous-time diffusion models. In particular, the same pre-trained DPD
model v̂✓ and was used to sample with two different angle schedules with 10 steps and 20 steps,
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respectively, conditional on the same semantic tokens generated for the text prompts in MusicCaps.
Table 4 shows their corresponding objective measures in terms of FAD and MCC. We observe a
significant improvement, especially when taking a small number of sampling steps, by using the
proposed sampling method. This is aligned with our expectations that taking larger steps at the
beginning of the sampling followed by smaller steps could improve the quality of samples, similar to
the findings in previous diffusion scheduling methods [50, 51].

We further qualitatively analyze the quality of the generated samples using some simple text prompts
of instruments, i.e., flute, saxophone, and acoustic guitar, by pair-wise comparing their spectrograms
as illustrated in Figure 5. In the case of “flute”, sampling with the proposed angle schedule results in
a piece of naturally sound music, being more saturated in high-frequency bands and even remedying
the breathiness of flute playing, as shown in Figure 5b. On the contrary, we can observe from the
spectrogram in Figure 5a that the sample generated with a uniform angle schedule is comparatively
monotonous. In the case of “saxophone”, the uniform angle schedule leads to metallic sounds that
are dissonant, as revealed by the higher energy in 3kHz to 6kHz frequency bands shown in Figure 5c.
In comparison, the frequency bands are more consistent in Figure 5d, when the proposed schedule is
used. While the comparatively poorer sample quality using the uniform schedule could be caused by
the limited number of sampling steps, we also show the spectrograms after increasing the sampling
steps from 10 to 20. In the case of “acoustic guitar”, when taking 20 sampling steps, the samples
generated with both angle schedules sound more natural. However, in Figure 5e, we witness a
horizontal line around the 4.4kHz frequency band, which is unpleasant to hear. Whereas, the sample
generated by our proposed schedule escaped such an acoustic issue, as presented in Figure 5f.

(a) 10-step sampling with uniform angle schedule for
text prompt: “flute”

(b) 10-step sampling with our proposed angle schedule
for text prompt: “flute”

(c) 10-step sampling with uniform angle schedule for
text prompt: “saxophone”

(d) 10-step sampling with our proposed angle schedule
for text prompt: “saxophone”

(e) 10-step sampling with uniform angle schedule for
text prompt: “acoustic guitar”

(f) 10-step sampling with our proposed angle schedule
for text prompt: “acoustic guitar”

Figure 5: Spectrograms of generated samples with uniform (left) and our proposed (right) angle
schedules
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Table 5: The objective measures for the ablation study on architectures.
Architecture Velocity MSE (#) SI-SNRi (")

UNet-1D [23] 0.13 5.33
UNet-2D [31] 0.15 4.96

DPD (Ours) 0.12 6.15

E Ablation Study on Architectures

To examine the superiority of our proposed dual-path model in Figure 2, we also study the ablation of
network architectures. In particular, to focus on the denoising capability of different architectures,
we only take a subset of the training data (approximately 5k hours of music data) to train different
networks with the same optimization configurations – 100k training steps using AdamW optimizer
with a learning rate of 5 ⇥ 10�4 and a batch size of 96 on 8 NVIDIA V100 GPUs. For a fair
comparison, we train the UNet-1D11 and the UNet-2D12 with comparable numbers of parameters
(approximately 300M). Note that the FAD and MCC measures are not suitable for evaluating the
performance of each forward pass of the trained network for denoising. In addition to the training
objective, i.e., the velocity MSE, we use the scale-invariant signal-to-noise ratio (SNR) improvements
(SI-SNRi) [35, 37] between the true latent z and the predicted latent ẑ = ↵�z� � ��v̂✓(z�; c). The
results are shown in Table 5, where our proposed dual-path architecture outperforms the other two
widely used UNet-style architectures in terms of both the velocity MSE and SI-SNRi.

F Qualitative Evaluation

To conduct a pair-wise comparison, each music producer is asked to fill in the form composed of
three questions. Specifically, we present the user interface for each pair-wise comparison in Figure 6.

Figure 6: The user interface for music producers in each pair-wise comparison

11Our implementation of UNet-1D relied on https://github.com/archinetai/a-unet.
12Our implementation of UNet-2D relied on https://huggingface.co/riffusion/riffusion-model-v1.
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